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SECOND-ORDER DIFFERENTIAL GAME OF KIND

V.S. PATSKO

An algorithm is derived for solving a differential game of kind /1/ for a second-
order conflict-controlled system. The article is closely related to /2-~5/.

1. Let a conflict-controlled system's motion on the plane R® be described by the differ-
ential equation

¥yt =4y () +ult) v (1.1)

where A is a constant 2 X 2-matrix whose eigenvalues have a nonzero imaginary part, u{f) is
the first player's controlling parameter, v () is that of the second player. At each instant

t the parameter u{l) is chosen from a segment P (C R* and v{{) is chosen from a convex com-—
pactum ¢ C R% The first player strives to take system (1.1} into a prescribed point m and
the second player tries to prevent this. The symbol U denotes the set of strategies /2/ of
the first player, namely, the set of all functions prescribed on R, X R?, with values in £F.
Here f, is the set of nonnegative numbers. The symbol V denotes the set of all measurable
functions of time, with values in (. Let A be an arbitrary partitioning of the semi-axis R,
by points 0 =t <<t < - . (t; > o0 as i~»o) and d (A) be the partitioning's diameter. For fix-
ed A, z, U,v by yti; 8,2, U, v) we denote an absolutely continuous function of time prescribed
on R, with values in R? equalling z when f =0 and being on each half-open interval #; < { <
tiyp {6 = 1, 2,...) of partitioning A’ a soluticn of the differential equation

YO =4y + Ul ) + 00

Let a, and a* be columns of matrix A,Ps and p* be extreme points of segment P, and s = (g,
a*, m, p,, p*, Q). By B (s) we denote the collection of all z & R® for each of which there exist
a strategy U & VU,an instant § >0 and a mapping ¢ 8 (8} from R, into R,, such that for any
€ >0, partitioning A with diametexr d{(A) <{8{¢) and function v &V we can find an instant
t=[0,08] at which y(t; A, z,U,v) lies in the ¢ -neighborhood of point m. In other words, the
set B(s) is the collection of all initial points 7 on the plane, for each of which there exists
a first player's feedback action method guaranteeing the transfer for system (1.1) from z to
m in finite time under any actions by the second player.
If for a chosen s the function

@) = maxminl (p+q), le R
PER g=Q

is convex or concave, then the solving of the problem of seeking set B (s) reduces /2/ to the
solving of a corresponding control problem. Questions on the description of set B (¥ when the
conditions of convexity or concavity of ¢ are not necessarily fulfilled where taken up in /3~
5/. The present article relies on /4,5/. In it we dexive, for the case when ¢ is not a con-
vex or concave function, an algorithm for constructing a certain set ¢ (s} coincidingwith cl B (s
if s belongs to the continuity set of the mapping s—»clB (s} (cI 1is the symbol of closure in a
Euclidean metric). In contrast to the one described in /53/ the algorithm proposedbelow admits
of computer realization. On its basis V.L. Turova wrote a computer programme for the construc-
tion of set C (s). Examples were run on a computer.

Let us make the concept of continuity of mapping §->¢lB (s) more precise. Let D be the
collection of (a,, a*) € R* X R? such that the matrix A =] ay, a*| has eigenvalues with non-
zero imaginary part. The symbol X denotes the space of compact subsets of R*, with the
Hausdorff metric dist (-,:) /6/; the symbol Y denotes the set of all closed subsets of R% From
the product R? X A® X X we pick out the subset I of elements (Ps> P*. Q) for each of which
the function ¢ is not convex or concave. Let § =D X R X I, Dist (., -) be the Hausdorffmetric
in S. A mapping F from § into Y is said to be continuous at a point s if for any compactum
I R%and any 8> 0 there exists 8> 0 such that dist (F(s) T, Fls,) M) <2 for every
s, =S satisfying the inequality Dist (s, 5,) <{6. Let §,( S be the set of all points of con-
tinuity of the mapping s->c¢lB(s) from § intc Y. It can be showr that the set §, is open
and that S\§, CclpS, (clpis the symbol of closure in the metric Dist (-, -)). Thus, the set SN8
is “small":. e
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2. We fix s §,. Without loss of generality we take it that the phase trajectories of
the equation y () = —Ay () go around the origin in the counterclockwise direction as t in-
creases. We separate the plane into four convex cones K; (i = 1, 2,3, 4) , running in succession,
with vertex at the origin, a nonempty interior and an opening <{sn such that: 1) the restric-
tion of @ to K, (K;) is a concave function and the restriction to K,(Ki) 1is aconvex function;
2) the restriction of ¢ to any cone K; is not a linear function. The existence of such a
separation follows from the definition of function ¢ and from the assumption (made in the
definition of set §) that it is not convex or concave.

We fix and denote by the symbol E an arbitrary closed polygonal line on the plane, con-
sisting of four links, such that if F; is its link numbered {, then

cl K; =[] AE,
Azo0

’

Let Hy be the restriction to E X R? of the function
H{l,z) =lVAz + o9 (), le R}, v = R?

In terms of function H, we formulate the necessary and sufficient conditions for B(s)s {m}
/4/. For any l, and l, from E, by o (/, ;) we dencte the angle between the vectors [, and [,
taken counterclockwise from the first to the second. When [ =1, we set p{{, ;) =0.We write
L<l, if l,%=1, and p{l, ) <m. We say that a vector * =F is aplus-to-minus zero of a
real function f prescribed on E if f({*)=0and f()>0 (f ()< 0) for any I<{I*(I*<l) suffic-
iently close to [*. In an analogous sense we speak of a minus-to-plus zero of function f. By
the symbol F, we denote the collection of all ze&sR? for each of which there exist l, and I*
from E, being, respectively, the minus-to-plus and the plus-to-minus zeros of the function
Hy(-,2), where o (l,,*) >nand H,(l,z) %0 for |=FE aifferent from ! sand [*. We define
the set F, as F, except that the condition p (l,, I*) > nis replaced by p (l;, {*) =n. For all
leeE, 2= R*, by A(l, 2) we denote the ray issuing from =z, whose direction after a rotation
by m/2 counterclockwise coincides with that of vector |, For & >0, z& R¥let O (8, ) de-
note the e-neighborhood of point z.

Lemma. Let s& S. Then the relation B (s) = {m} is equivalent to one of the conditions:
1) m& F,2)ymezF, and & >0 exists such that O(e, m) (| A (I*, m) CC F, {J Fy. where /[* is a plus-
to-minus zero of function H, (-, m).

If the lemma's condition 2) is fulfilled, then s is not a point of continuity of the map-
ping s—cl B (s). Therefore, the computer verification of only the condition 1) is sensible.
When it is fulfilled, we pass on to the construction of the curves defining the set C (s). When
condition 1) is not fulfilled, we set ( (s) = {m).

3. We introduce the concepts and notation needed. For any integer 1 Le L owe set(c) =
lece{izdé}and(c) 1 if ¢=5. Let ¢i=1 when ¢=2 and ¢=2 when ¢c=1. For
=1.2,i=1,2, k=1, 2 we take
BV () = Egisna-yn TV O =EP () U £V ()
Py (i) = {z = R* (~1>“‘H ™ (1, 2) <0, L B (i)
M® (@)= BN (P () U PV ), T () = 0P (i) \aPL (i)

Here J is the symbol for boundary, H ™ (i, z) = (=1)* Hy {l, ). By symbols e ™ (i) and e M (i)
we denote the extreme points of segment FE, ™ (i). We take it that g, (i) < em* (). Let

T (L) — F(")( {el*(n) ) U {e, (n)* )})

\ zz
0.6 L =
Iy
g
z
0.2 L |2
ST
g z, ) m 4 Iy )
0.8 08

Fig.1 Fig.2
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Fig.l shows a possible form for the sets P/ (1). P,W (1), MO (). Fox any n = 1,2, i = 1,2 a minus~
to-plus zero of function (-, 2}, belonging to I'™ (i) exists for every z ¢= MM (i) Function
Hy™ (-, 2) is convex on FE,™ ({) and concave on E," (i) ; therefore, the vector From I0)(j), being
a minus-to-plus zero, is unique. We denote it by LO0(, z). If 2 & M® (i), then the function
H (-, 7) does not have the minus-to-plus zero in [ (i), The function LW {i .} satisfies a
local Lipschitz condition in M™ (i)

For n == 1,2, 1= E let " () be the unit vector turned by /2 relative to /, counter-

clockwise if n =1 and clockwise if n == 2. We set JO (i, 2) = y™ (LOY (i, 2)). Let » - L, 2.¢ = |,
2oz MW T ). By ¢M™(-,i,1) we denote a smooth function (a curve in parametric
notation) defined on some segment [0, 1™ (i, )], 1 (i.z) > 0, satisfying the conditions ¢ (0, i 2) -

g™ (e (i, 1), i 2) €2 Ty () and being on (0. 1t (i, 4)} a solution of the differential equa-

tion .

¥l - JM g ()
Such a function {curve) exists and is unique. The curve ¢V (-, i, %) is a smooth semipermeable
curve /1/. For the curve ¢™ (-.i.2) we introduce the concepts of sprout instant and peoint.
By W (i, 2} we denote the collection of all v & (U, 1™ {i. 1)) for each of which there exists

ez I'on (1) L {&."* (B}, such that
1 p (L (i, ¢ (v — 0, 1, ). 1) <=
D HM L g (a0 TS B, LW, g (x — 0, i, 1)) <l < IF
3) H (, ¢ (x, i, 2)) < 0

for any ! & F sufficiently close to [ and satisfying the relation [® <l I1f set WO (i, z) 5&
@, then it consists of one or two elements. We denote the element closest to ™™ (i, z) by
w™ {i, 1} and call it the sprout instant. The equality wi™ (i, 2} = 10 (i, z). is possible. The
point H® (i, 2) = ¢ (M (i, z), i, )} is called the sprout point.

4., Let the lemma's condition 1) be fulfilled. By 4" we denote aminus-to-plus zero of
function H,W (-, m), n=1,2. Let i® e {1, 2}be such that LM e T (i0) \ {et (i)}, If i® = gb,
then a sprout point exists on curve ¢® (-, i® m). We set

q(z) ('r, {(2)’ m)’ T [O, 242} (l‘(‘Z)’ m))
PP () = | g1 — w® (I, m), [, OO m)), 1 [wd {i®, m)
T (1@, 1) (1 m )]

If i i® let p® (1) = ¢® (1, i, m). By virtue of the special properties of point m the curve
¥ does not selfintersect. Having constructed p®, we go on to construct the curve p,® (1) =
gV (1, i, m). Let [0, ©,®], 10, 6, be the domains of curves p,®, p®.  Moving along p from
the point m, we verify the intersection of curve (0, ©,M] with the curve 7. . Here and
later, for a function [ of a real variable, the notation fla, b} {fla, 8}, f (a, b]) signifies the
restriction of f to the segment [g, §] (to the half-open intervals fa, B, {a, Bl). If there is
an intersection, let oM e (0, ©,M] be the first instant of intersection and let a,® & (0, 8,®)]
be such that p;® {a;®) = p,( (a,M).

We define C (5) as a closed set bounded by a curve made up of the arcs p, [0, a,M, p,® [0,
;%L Wwhen 2 is not tangent to p,® at the point of first intersection, then the boundary
of set € {s) is a piecewise-smooth semipermeable curve. In case of tangency the boundary is
not a semipermeable curve and C (s) %= ¢l B (5). In this case, however, the chosen s& § does not
belong to the set S; of points of continuity of mapping s> cl B (s). Fig.2 shows a possible form
of set € (s). The curves p,M, p;® are labelled 7,2 The arcs of the curves, not belonging to
dC (s), are shown by dashed lines. If the curve p,™M (0, 0,M] does not intersect curve p,®, the
construction is continued. We find the sprout point on p,%), understanding by this the sprout
point on curve ¢® (-, i® r® (M, m)) when M = i» and the sprout point on curve ¢ (-, i®, m)
when & %) When p,® (0, ©,M} does not intersect p,®, such a point exists. Let o® =uw® ({®,
@ (i, m)) when i = i and & = W (i®, m) when s i and let z,® = p,® (,®). We set

07 =10 (0, &), & =l + 67

P (), [0, ¢
g (D)==1 @) ) @ 2
i (t—cyy tesle . ds|

In case i) sk i® we proceed to section 1) and in case i) = i), to section 2}.
1} Moving along P® from 2/, we verify the intersection of p,® with p®. If theremis
one, let k,® < 10, 8,®) be the first instant of intersection and E® =k® + e, £ & 10, 8,0
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be such that P,® (M) = pf (k). We define € (s) as the closed set boundedby a curve composed
of the arcs p,® [0, E,M], g,® [0, £,®]. If p® does not intersect p,'Y), then a sprout point ex-
ists on pM. Let &® = w® (i, m), M =p® ;™).  We construct the curve pM {z) == ¢® (1, ID,
). We set

e(n = () (zm 2 x))‘ d(zl) :cm + 8(\)

7Y (1), te(0, ")

(t —
g (T) = {p(l) (v — (‘) T [cz‘), d-(zl)]

Moving along p® from  z®, we verify the intersection of pft with g . If there is one,

let g, &[0, 8,1] be the first instant of intersection and a, = o, 4 &), &,® & 10, d,®] be

such that g, (a,®) = p,M (2,M). As C (s) we take the closed set bounded by a curve composed of
the arcs "M 10, a,M], g™ 10, ,®]. If p, does not intersect g™, then a sprout point exists
on p,® We construct the curve p,® (1) = ¢® (1, IV, z;®). We set

8?’:‘5(2’ (}(1) 12))’ d§2)= c(f) + C(i) 4 @(2)

I (‘2)(.C) TE{O C(z) Le ,gz)Ir

(2
& (1)= 3] o
Lo = — e, vl + o, df")

We go on to section 2).

2) Let o = 2 when M= i{® and w =3 when i ®, We say that an unwinding (of
curve g£,®) has been fixed on curve p,® if 1* [0, 6,®] exists such that
(2} ap®

(=

P
dt

(2)

(B, ) <a (R

p(i)

(t*). m)

2a) Assume that an unwinding has not been fixed to p,?® The subsequent constructions
are recurrently defined. Set g™ = pY, 4/ = 8", ™ = ¢m = § (5 = 1, 2). Suppose that the
curves gf,i’, .88, r+ 12> e have been constructed. Denote

()
Ay = an), n=1,2, (kgk<\r
0k
Moving along pm from z(ﬂ)g we verify the intersection of pﬁ?l with g [M‘_’,, d,M. For the case

AN, % @ (4.1)

i.e., when an intersection exists, let k(” = [0, 8%] be the first instant of intersection,
Pa = 8O e B =BG AL B S G, 4

be such that g : g (E“’) = p¥L (M%), G4, be a closed set bounded by a curve made up of the arcs

M [0, &%, giﬁl {0, 8],  The curve p,» may not have a sprout point only when condition (4.1)

is fulfilled. Then we assume

C(s) = G (4.2)
If a sprout point does exist on p(, we take ¢l = w® (i, 2,0, I\ = p,M (). Here and later
iy =i for odd k and iy = i for even k. We define set C (s) by equality (4.2) if (4.1) holds
and ¥ < B 1f condition (4.1) is not fulfilled, or is fulfilled but c%) > &l},, we go on to

construct the curve pt, (1) = ¢ (1, ip,a, ;g}l). We set
1) ¢] . .
O N =)
{1} (1)
g(”( )= g {th =0, A5)
ret 1
Psw)l (T‘“A«wﬂs TE{M},\)‘, d(,?,]
. 1
Moving along pi,.)l from zux we verify the intersection of p,-+1 with g(n) [A,®), d‘,ﬂ] For the case
1 2 {2}
F§r+)1 N gil); SR AR (4.3)

« : R . . ' s
let af¥ = {0, 21 be the first instant of intersection, ol = a%, Jor‘jx, ol e Ta,@, 421 be such
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@ (@ PR
that g (@) = P (), G, be a closed set bounded by a curve made up of the arcs g o,

a1, g2, 100, a2 Suppose that condition (4.3} is valid. When condition {4.1) is not fulfil-
led, or is fulfilled but % < E¥, we set
C() = G a4

Let condition (4.1) hold and let o) > EY. If a sprout point exists on pJ, we assume ¢!, =

WM (i1, 23), % = pi (cf) and we construct the curve pph (1) = ¢ (1, iy, o). If a sprout

point exists on p“,‘j?, we assume ¢ffy = W) (i, 25), 2 = pi; (¢}Vs), we construct the curve
pih (1) = ¢ (T, iyia Zys) etc. Two possibilities exist., Either for some A > r + 1 the curve
th” does not have a sprout point or the process of successive construction of curves Py,
Pr43 - - .. is infinite. In the first case we define C {5} by equality {(4.2). In the secondcase

the infinite curve

gM (@) = p® (x — M), tey® MY, E=1,2,... (4.5)
W= 3
GEIER

is a twisting spiral winding down onto its own limit cycle. The open set bounded by the limit
cycle is denoted KO, We set C (s) = Gf,; \ K.
Suppose that condition (4.3} not be fulfilled If a sprout point exists on p(,i)l we take

O w® (i, 2, 20 = i (63h).  Let condition (4.1) be valid and suppose that either there

Crie
is no sprout point on [zsffl or that there is one but cﬁ?}z s kﬁ)g. Then the subsequent construc~
tions are carried out as described above when {4.1) and (4.3) are fulfilled andwhen aff .- &%,
with the difference that when constructing the curve pll, we verify its intersection with the
curve gy W, d3) = p%, and, if there is one, we bound the set C(s) by a curve composed of
the arcs glh{0.all], g2 10, o). Here alt) = ally 4 A, all, & [0, 8,1 is the first instant of in-
tersection and a'¥, = [, d¥] is such that g% (af&,};) = pl, (al¥,). When condition (4.1) is not
fulfilled, a sprout point exists on p(f,’l- Suppose that condition (4.1) is not fulfilled or
is fulfilled but a sprout point exists on pi¥,. and that ¢f% < k%, We construct the curve
PR (D) = O (1, L. %), We assume

O =1 (ir0, 2%, A=A 4 B, d%, =2, + 0,

[g¥ (), T [0, AR,

(I
Hrea {T) = 2) "
i 2 (T~ M‘?‘A)- T [M‘i)cv (55;}2

Thus, in the last case we have obtained a transition form the curves g}, g to the curves

&%, 8. With recurrent construction there can be only a finite number of such transitions.

2b; Suppose that an unwinding has been fixed on p,®. In this case the curve p,®
has a sprout point; we denote it :ffll . The curve p(f,i; (t) = ¢ (1, Iy, zgll} too has a sprout
point, etc. The infinite curve

() = p® (1 — ), e M), k=12, ..

(the notation is clear from the preceding exposition) is an untwisting spiral. If it has a
1imit cycle, let K® bpe the closed set bounded by it. When there is not limit cycle, we take
K® = R, If a sprout point does not exist on P2 we set C(s) = K®. Let a sprout point
exist on pti‘. We construct the curve P! . When @ = 3 we proceed to section 3}. When
® =2 we verify the intersection of p,/ with £® (0, ™  wWhen it exists, we define (s} by
equality (4.4), having set r -+ 1 =2 in it. Let there be no intersection. If a sprout point
does not exist on p,, we set C () = K&  If a sprout point does exist, we construct the curve
75" and proceed to section 3).

3} We say that an unwinding (of curve £i")) has been fixed on the curve p,® if ©* == 0. 8],
exists such that
n’p(sn
o

I3 Pgn
adt

7 py) d,

. Pi?} .
(M= e (0), (-

(%), F(s”(”f*)) -'E;H( (t*), ’”‘)

3a) Suppose that an unwinding has not been fixed on p, wWe verify the intersection
of psV with g [, dyl. When it exists we define ( (s) by the equality (4.4}, having set
r+1=23 in it. Let there be no intersection. We proceed to the construction of curve p,(,
next psM, etc. We take C {5) = K® if the process of successive construction of the curves
25, p®, pM ... stops at a finite number. If it is infinite, the curve g introduced
by formula (4.5) is a twisting spiral winding down onto its own limit cycle. We set ({s) =
K® N\ KWU{K® is an open set bounded by the limit cycle of curve g,
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3b) Suppose that an unwinding has been fixed on py!. Then the curve ps" has a sprout

point, the curve p/ too has a sprout point, etc. We define a recurrent method for const:.ruct-
ing the curves. Suppose that the curves g, & r+ 1>3 Dave been constructed. Moving
along pf) from 2%, we verify the intersection Py with gin A ®, 47 .(a-lntersc?ctlon) and
the intersection of Prawith g% ¥, 1® (B-intersection). If the f-intersection exists,
let b% e 10, S‘f,l be the first instant of f-intersection, B® — &, -+ 2%, 82 e (MY, 1,®) be
such that g,}, (ﬁ,ﬂ) = p¥) (BY), GP,, be an open set bounded by a curve composed of the arcs
g 1o, B, gy 0, B .

Suppose that a-lntersectlon exists, but f-intersection does not exist, or both types of
intersection exist but ot < B%:  Then we set C(s) == 6%, (the instant !}, and the set G,
were introduced in the text below formula (4.3)). Suppose that .3~1ntersect10n exists, but

a—-intersection does not exist, or both types of intersection exist but a‘, 1> ﬁm We set2

C (s) = K® N _GY,. 1If there is neither «- nor P-intersection, then we take the curves 2%
and g, as constructed. If for any k>3 the curve p" has neither an a- nor a  f-inter-
section, we define C (5) as a closed set contained between the curves g, g.®. In this case
the curves g«®, g.® do not have limit cycles.

Figs.2 and 3 show the results
of the calculation of three ex-
amples on a computer. In the

7 first example (Fig.2) m = (0.1; —0.1),
in the second (Fig.3,a) and in the
third (Fig.3,b) m= (0;0). In all

w\\\ 41 examples P is a segment of length

2 on the T-axis, symuetric re-

<

%
==\
M)

m
\ ,\“ s}
~0.5 8
N

{ / / I lative to the origin. The vertices
2 ~
2 of POLYQOR : {(—0.84; —0.80), (—0.08; 0.31),
e T ! . % {—0.08;0.00)} in the first ex-
’ Ty 5 = ! o ample, {(—0.84; 0.90), (—0.36; 1.75). (—0.10;
! oy 0.25), (—0.10; 0.08)) in the second

and third, Matrix 4 has the form
%0.1 ig 10.465 1 0.05 1
—1 o) | —1 aﬁ* —1 eﬁ

In the first example the set C() is bounded by the curves p [0, &, 1[0, @ (labelled 1,2
on Fig.2), in the second, by the curves pM (0, M, g™ [0, £} (labelled 1,2) on Fig.3,a). 1In
the third example C€({s) is bounded by the limit cycle of curve g, labelled 2 on Fig.3,b; the
curve g is labelled 1. The curve p in the third example does not have a sprout.

Fig.3
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