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SECOND-ORDER DIFFERENTIAL GAME OF KIND* 

V.S. PATSKO 

An algorithm is derived for solving a differential game of kind /l/ for a second- 
order conflict-controlled system. The article is closely related to /2-S/. 

1. Let a conflict-controlled system's motion on the plane @be described by the differ- 
ential equation 

y' (t) = Ay (t) + u (t) .-c u (I) 
(1.1) 

where A is a constant 2 x 2-matrix whose eigenvalues have a nonzero imaginary part, u(t) is 

the first player's controlling parameter, u(t) is that of the second player. At each instant 
i the parameter r~(t) is chosen from a segment P CR' and u(t) is chosen from a convex com- 

pactum Qc: fi2. The first player strives to take system (1.1) into a prescribed point m and 
the second player tries to prevent this. The symbolU denotes the set of strategies /2/ of 
the first player, namely, the set of all functions prescribed on R, X R2, with values in 1'. 
Here B+ is the set of nonnegative numbers. The symbol V denotes the set of all measurable 
functions of time, with values in 
by points 0 = t, < t, < . e . (ti --)r 00 

Q. Let A be an arbitrary partitioning of the semi-axis K+ 
as i-+ m) and d(A) be the partitioning's diameter. For fix- 

ed A,x, u, V by y(.; A,& u, V) we denote an absolutely continuous function of time prescribed 
on R, with values in R2, equalling * when t =8 and being on each half-open interval t, :-< 1< 
ti+l (i = 1, 2,. ..) of partitioning !k'a solution of the differential equation 

Y' (0 = Ay (t) + c' (ti, y (ti)) f u(t) 

Let a, and a* be columns of matrix A, P * and p* be extreme points of segment P. and S ==(a,, 
a*, m, P*, P*, 0). By B(S) we denote the collection of all zeR2 for each of which thereexist 
a strategy U ~U,an instant tl>O and a mapping e--+8 (E) from R, into R,, such that for any 
E > 0, partitioning A with diameter d(A)<&(&) and function Y EV we can find an instant 
tE rO,@! at which y(t;d,x,Zi,v) lies in the E -neighborhood of point nz. In other words, the 
set B(S) is the collection of all initial points z on the plane, for each of whichthereexists 
a first player's feedback action method guaranteeing the transfer for system (1.1) from z to 
m in finite time under any actions by the second player. 

If for a chosen s the function 

is convex or concave, then the solving of the problem of seeking set B(s) reduces /2/ to the 
solving of a corresponding control problem. Questions on the description of set B(s) when the 
conditions of convexity or concavity of p are not necessarily fulfilled where taken up in /3- 

5/. The present article relies on /4,5/. In it we derive, for the case when cp is not a con- 
vex or concave function , an algorithm for constructing a certain set C(S) coincidingwith cl B (ri 
if s belongs to the continuity set of the mapping r-clBIsf (cl is the symbol of closure in a 
Euclidean metric). In contrast to the one described in /5/ the algorithm proposedbelowadmits 
of computer realization. On its basis V.L. Turova wxote a computer programme for the construc- 
tion of set C(s). Examples were run on a computer. 

Let us make the concept of continuity of mapping s-+clB (S) more precise. bet D be the 
collection of (a*, a*) E R2 x R2 such that the matrix A = /Ia *, a*(\ has eigenvalues with non- 
zero imaginary part. the symbol X denotes the space of compact subsets of R2, with the 
Hausdorff metric disk (., a) /6/; the symbol Y denotes the set of all closed subsets Of RZ. From 
the product R2 x 11% x X we pick out the subset U of elements &*,I)*, Q) for each of which 
the function P is not convex or concave. Let S =L) X Rz $: IT, Dist f., .)betileBausdOrffnletric 
in 3. A mapping F from S into Yis said to be continuous at a point s if for any Compacturn 
r C R'land any E> 0 there exists 6-2 0 such that dist (F(s)r)r, F(S*) ii r) <& for every 
S,ES satisfying the inequality Disc (S, S*) .< 6. Let S,c: S be the set of all points of con- 
tinuity of the mapping s+Cl B(s) from S into Y. 1t can be showr. that the set S, is open 
and that S\S, CclnS,(clDis the symbol of closure in the metric Dist(., .)). Thus, the set r‘\st L 
is "small"+. ___~_. -. 
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2. We fix SES,. Without loss of generality we take it that the phase trajectories of 

the equation y'(t) = -_Ay(t) go around the origin in the counterclockwise direction as t in- 

creases. We separate the plane into four convex cones K,il = 1,2,3,4) , runninginsuccession, 

with vertex at the origin, a nonempty interior and an opening <n such that: 1) the restric- 

tion of cp to K,(K,) is a concave function and the restriction to K?(&) isaconvex function; 

2) the restriction of cp to any cone Ki is not a linear function. The existence of such a 

separation follows from the definition of function cp and from the assumption (made in the 

definition of set S) that it is not convex or concave. 

we fix and denote by the symbol E an arbitrary closed polygonal line on the plane, con- 

sisting of four links, such that if E, is its link numbered i, then 

cl Ki =i5j0hEi 

Let Ho be the restriction to E x R” of the function 

H (I, 5) = 1’Ax + ‘P (1), 1 E R*, .z c R* 

In terms of function H, we formulate the necessary and sufficient conditions for B(s) f (m) 
/4/. For any 1, and 1, from E, by p (I,, 12) we denote the angle between the vectors 1, and I,, 

taken counterclockwise from the first to the second. When 1, = 1, we set p (1,, Iz) = 0. We write 
1, < 1; if 1, # I, and P (l,, 12) < n. We say that a vector 1* =E is aplus-to-minus zero of a 

real function f prescribed on E if f (1*)=-O and f (l)>O (f(l)(O) for any l</*(l*<L) suffic- 

iently close to 1*. In an analogous sense we speak of a minus-to-plus zero of function f. By 

the symbol F,we denote the collection of all XE R* for each of which there exist 1, and 1* 

from E, being, respectively, the minus-to-plus and theplus-to-minus zeros of the function 
H,(-,s), where p (l,, l*)> n and H,(I, .z)# 0 for 1 E E aifferent from 1 sand I*. We define 

the set F, as F1 except that the condition p(Z,, 1*)> nis replaced by p (l,, 1*) .=x. For all 
1 E E, 5 E R”, by il(l, x) we denote the ray issuing from x, whose direction after a rotation 

by n 12 counterclockwise coincides with that of vector 1. For E > 0, x E R2 let 0 (E, 2) de- 

note the e-neighborhood of point X. 

Lemma. Let SE S. Then the relation B (s)+(m) is equivalent to one of the conditions: 

1) m E F,,2)m E F, and a> 0 exists such that 0 (E, m) (1 .\(1*, m)~ F, d F,. where i* is a plus- 

to-minus zeroof function H,(.,m). 
If the lemma's condition 2) is fulfilled, then s is not a point of continuity of the map- 

ping .q+CI B(s). Therefore, the computer verification of only the condition 1) is sensible. 

When it is fulfilled, we pass on to the construction of the curves defining the set C(s). When 
condition 1) is not fulfilled, we set C(S) = {m). 

3. We introduce the concepts and notation needed. For any integer 1 <,<c <j we set(c) = 
c if c E {I, 2, 3, 4) and (c) = 1 if c = 5. Let E=l when c = 2 and ?=2 when c = 1. For 

n = 1. 2,i = 1,2, Ii = 1,2 we take 

E);"'(i) = E<?r+"+5), P'(i) = E:"'(i) C] E:"'(i) 

P,@) (i) = (z E R?: ( -l)k+lHo(n) (1, .z) < 0, 1 e E&l’) (i)} 

Men)(i)= R*\ (P’;“‘(i) !J P?'(i)), 7$"(i) = dPg" (i) \.M$' (i) 

Here 8 is the symbol for boundary, E{,,(n) (I, x) = (-l)*H,, (1, 5). By symbols e,,(") (i) and eh.cn)* (i) 
we denote the extreme points of segment E,(")(i). We take it that e,,(n) (i) <eh.(n)* (i). Let 

r('l) (i) : Pn) (i) \ ((e,, (n) (i)) u {e,(‘*)* (i)}) 

11.6 

0.2 

0 

Fig.2 
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Fig.1 shows a possible form for the sets P, (1' (1). in.,(') (1). ilf(" (I). Fox any !1 
to-Plus Zero of function H,("'(., 1.1, belonging to *r+'(i) 

1, 2. L I. 2 a minkls- 
exists for every d' (1: ,ff(n' (i) Ylinction 

Nufi" (., .r) is convex on Klfn' (i) and concave on E?("' (i) : therefore, the vector from r(',' (i), being 
a minus-to-plus zero, is unique. We denote it by Ai'? (i, .z). If 1‘ E :16(?" {i): then the function 
Il,,('i'(.,s) does not have the minus-to-plus zero in l"(,l' (i). The function L("' (1. ‘) satisfies a 
local Lipschitz condition in &'Cn'(i) 

For r~ .: 1, 2, 1 E E Let @“‘(/) be the unit vector turned by n/Z relative to i, counter- 
clockwise if 'I = 1 and clockwise if II = 2. We set J("' (i, .r) L y("' (l,("' (i. .r)). Let ,i I, 2, i I, 

2. S +Z .2i(‘1) (i) i_ j TIca) (6). By q(“)(-,i.~-) we denote a smooth function (a curve in parametric 
notation) defined on some segment lO,r("' (i. J)]. T("' (i..r) :,. 0. satisfying the conditions I{('~' (0, 1. .i) 
S. $'Q(r(':'(i. z), i. 2) E T.;"' (i) and being on (O,~("'(i..t)) a solution of the differential equa- 
tion 

Ii“ CT) .J"' ii, I]: (1)) 

Such a function (curve) exists and is unique. The curve q("' (., i, S) is a smooth semipermeable 
curve /l/. For the curve q("'(. . i..z) we introduce the concepts of sprout instant and point. 
By 1V" (i, X) we denote the collection of all T E (0, T("' (i. .r)) for each of which there exists 
ib E rc'*' (i) \ {e,("'* (f)). such that 

1) p (LC'"' (i. 4'"' (T - 0. i. X)). r*) (3 

for any 1 EE sufficiently close to lo and satisfying the relation 1'<1. If set WC"' (i, 5) f 
@J, then it consists of one or two elements. We denote the element closest to T("'(i,s) by 
w@'(f, Z> and call it the sprout instant. The equality &'(i, z) = a@)(i, X) is possible. The 
point fi-(n’ fi, x) = q(n) (t#) (i, s), i, z) is called the sprout point. 

4. Let the lemma's condition 1) be fulfilled. By llcn' we denote aminus-to-plus zero of 
function liO(n' (a, m), n = 1, 2. Let i(=' E {1, 2) b e such that Il(n' E I?@ (i@') \ fe(Q*(ifN)}. If if21 = i(l): 
then a sprout point exists on curve qc2) (. , P', m). We set 

i 

$2)(-T, P', m), I E [O, ul@'(i@', m)) 

pf"'(7)= q@)jz - z&2’ (i(“), m), 3), G’ (i @‘, m)), z E &,A% (i(l), m) 

@‘$Z’, jd”‘(ifZ’, m))] 

If it*) + i(l), let PI(~) (2) = (1(2’ (7, P’, RZ). Ry virtue of the special properties of paint mthe curve 
(" does not selfintersect. 

5:’ (t, #, 
Having constructed pr(", we go on to constructthecurve ~~(~‘ft) = 

m). Let 10, @,!"I, 10, 8,")J be the domains of curves I_'~(", pI(H'. Moving along ~~f'f from 
the point m, we verify the intersection of curve pI (‘) (0, @,(“j with the curve &(". . Here and 
later, for a function f of a real variable, the notation f la, 61 (f fa, b), f (a, b]) signifies the 
restriction of j to the segment [a,61 (to the half-open intervals i&h), fa,b]). If there is 
an intersection, l-et a,("E(O, O,(r)] be the first instant of intersection and let a,(?'~(13,8$~'] 
be such that Pr(" (a,(") = pl(l) (a$‘)). 

We define C(S) as a closed set bounded by a curve made up of the arcs pl("](!, a,(“], ~~‘“‘10, 
a,w When pr(r' is not tangent to pl(y’ at the point of first intersection, then the boundary 
of set C(s) is a piecewise-smooth semipermeable curve. In case of tangency the boundary is 
not a semipermeable curve and C (s)+clB (s). In this case, however, the chosen SE S does not 
belong to the set sI of points of continuity of mapping S-+CI B(S). Fig.2 shows a possible form 

of set C fs). The curves pi@'. pI(*f are labelled 2, 2. The arcs of the curves, not belonging to 

X(s), are shown by dashed lines. If the curve ~~(~'(0, @,(')I does not intersect curve p1c2', the 
construction is continued. We find the sprout point on pl(", ’ understanding by this the sprout 
point on curve q(” (+, i@), r(*) (P’, m)) when ifI' = @' and the sprout point on curve @" (., it"', m) 
when if" f: iv'! When pl(‘)(O,O,(‘)] does not intersect pi@', such a Point exists. I&t c12@ z m('i (?(2', 

r(*' (i(*), m)) when i(l) = $2' and c?@' = w@' (it", m) when @' f i(" and let zn@' xz p,(z) (c,@'). We set 

In case i(r)+ i@' we proceed to section 1) and in case $0 -z if!', to section 2). 

1) Moving along p$"' from z,@', we verify the intersection of pa@' with pi’). If there is 

one, let kzW E (0, g,W] be the first instant of intersection and g,@' =k&" + &'*'I &G' E to, @$"I 
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be such that PI(') (&('I) = p&*) (kzc')). We define C(s) as the closed set boundedbyacurvecomposed 

of the arcs plC1) [O, EGj],g,P) [O, E$j]. If pz(“j does not intersect ~1(l), then a sprout point ex- 

ists on p*‘j . Let c,il) = WC', (Pi, m), zpr = pl"' (C*(')). We construct the curve ~4’) (t) = q(I) (T, #j, 
z,(‘)) . We set 

e(*)= r(i) ($1) 2 z(l)) ($1) &1) J_ #'j 
,2t z 2 b 2 

gf (4 = 
Pl” b-b z E [O, ci9 

pz” (T -cY’), t E IQ 1 (1) &“I 

Moving along pz(') from z,(l), we verify the intersection of p&l) with g,('). If there is one, 

let az(*) ~10, &(I)] be the first instant of intersection and a,(') = a,(') f cG'), a,(') E f0, d$‘j] be 
such that g&V (af)) = p20f (~~(1)). AS C(s) we take the closed set bounded by a curve composed of 
the arcs g,(l) IO, cLI(l)l, gJ2) IO, a,(*)]. If pz(tj does not intersect ,('), then a sprout pointexists 

on p2@) We construct the curve p3t2) (T) -_ q@) (t, i(l), z,@)). We se?- 

We go on to section 2). 
2) Let 0 = 2 when 6') = 8%) and o = 3 when i(l)+ i(z). We say that an unwinding (of 

curve go(z)) has been fixed on curve p. ('j if T* ~10, @o@)) exists such that 

2a) Assume that an unwinding has not been fixed to pw”) The subsequent constructions 
are recurrently defined. 

(21 
Set g,(l) = ptC1), d,c't = e),fci, c,(") = cl(n) = ij (12 = i, 2). Suppose that the 

curves g,+t,g,(f),r + 12 o have been constructed. Denote 

Moving along P% from zk"! we verify the intersection of p!:: with gruj [hyi,, d,clj]. For the case 

(4.11 

i.e., when an intersection exists, let @,~(0, @,] be the first instant of intersection, 

,.;; __: ?,r(2) + c(Z) *+I> 5$, = k;‘, + I.%‘,.:‘,, gi:‘, E Ii.“’ d (‘I] ?I* r 

3’) (51::) = pi?, M’,), G:+, 
;(l)sKh$iatg$$ IO, @,I. 

be a closed set bounded by a curve made up of the arcs 
The curve p,(l) may not have a sprout point only when condition (4.1) 

is fulfilled. Then we assume 

C (s) = G:,, (4.2) 

If a sprout point does exist on p,.('), we take ci:, = ~(1) (i,, t!')), ::!I, = or (czy,). Here and later 
ik = i(l) for odd k and ik =i i(r) for even k. 

and C,+I \ (I' < El:',. 
We define set c(s) by equality (4.2) if (4.1) holds 

If condition (4.1) is not fulfilled, or is fulfilled but c?$> $2,, we go on to 
construct the curve ~$2~ (z) = q(l) (T, i,l, zL$). We set 

(1) Moving along p,+, from z(" Tf, we verify the intersection of p!?, with &J1[h (2) @]_ r . r+, For the case 

p!:: fi g’“‘, [Ii@) r+ r> &I f $3 (4.3) 

let a!:',= rO,@$,l be the first instant of intersection, C& = &J, + h$, a?, E I?#), dl?:,] be such 
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that g$g (a$) = ‘Jp (a$), G” Ttl 

c&f, gl?: LO, af:il. 
r+, be a closed set bounded by a curve made up of the arcs SC', ICI, 

Suppose that condition (4.3) is valid. When condition (4.1) is nt)t iulfr;- 
led, or is fulfilled but ~$2, <E$J1'!,, we set 

Let condition 14.1) hold and let a~:~*i; I'$!*. If a sprout point exists on p:J, we assume cr+? = iI) 
and we construct the cur;: pl$', (t) = q(l) (t, i,,,, z(,$. If a sprout 

c$ = w(J) (i,+%, z$), ~,a e &Jz (ct:';,, we construct the cUrve 

Two possibilities exist. Either for same h> r f 1 the curve 
&('J does not have a sprout point or the process of successive construction of curves IJJ 

tit 
PM. 

Pr+at . , . . is infinite. In the first case we define C(s) by equality (4.2). In the secondcase 
the infinite curve 

g,(J) (.t) = p*(J) (z - h$'J), 7 E ih,('J, hj:",), k = 1, 2, . . . (4.5) 
l.l'Jzz 2 Cj'J 

GS,<k 

is a twisting spiral winding down onto its own limit cycle. The open set bounded by the limit 
cycle is denoted k'(J) . We set C (s) = @+I \ X@J. 

Suppose that condition (4.31 not be fulfilled If a sprout point exists on p!:: we take 
$22 = UP) (i,,,, &?j,. zr+? (fl _ #j, (cz$), Let condition (4.1) be valid and suppose that either there 
is no sprout point on (II'., or that there is one but & ‘1 ii::,. Then the subsequent construc- 
tions are carried out as described above when (4.1) and (4.3) are fulfilledandwhen os';\ *t?) tr+t. 
with the difference that when constructing the curve pi:'? we verify its intersection with the 
curve g'yl ih T$ &Q _ &jl 

the arcs &$I0 a”‘. 1 g”_’ 

and, if there is one, we bound the set C(s) by a curve composed of 

I rtl . r I [O , a$I. 
tersection and cci?, z [i!Pyl. &lj 

Here a!:), _ & + A(” n$t&O, @$J is the first instant of in- 
is such that ~~~(~~~~) = ~~~(u~~~).~en condition (4.1) is not 

fulfilled, a sprout point exrsts on p$!+JJ. Suppose that condition (4.1) is not fulfilled or 
is fulfilled but a sprout point exists on p!!',. and that ci!, (kz\. We construct the curve 
pzi (T) =: 4"' (T. irwz. ;$,. WC? iiSSUEle 

Thus, in the last case we have obtained a transition form the curves .&'~',,g,(l) to the curves 
g:'-i. _ s:+:. With recurrent construction there can be only a finite number of such transitions. 

2b> Suppose that an un-dindinghas been fixed on pw(">, In this case the curve p.*(?' 
has a sprout point; we denote it $i',. The curve p$i, (z) = @jr, E,,, &,) too has a sprout 
point, etc. The infinite curve 

g,C') (7) 7= p@ (T - h*(e)), T E [h&$2), @,), li = 1, 2, . . 

(the notation is clear from the preceding exposition) is an untwisting spiral. If it has a 
limit cycle, let R(') be the closed set bounded by it. When there is not limit cycle,wetake 
K(2) = R". If a sprout point does not exist on p":ll: we set C(s) = Rt2). Let a sprout point 

exist on pci,. We construct the curve PO(') . When <,J :' J we proceed to section 3). When 
(0 ~= 2 we -verify the intersection of I)L(') wit:1 g,(') (0, t&(*)1 ?Xhen it exists, we define C;(8) by 

equality (4.41, having set f -: 1 -2 in it. Let there be no intersection. If a sproutpoint 

does not exist on [I.?('), we set c (A') p=_ ii;';. If a sprout point does exist, we constructthe curve 
Pa(') and proceed to section 3). 

3) We say that an unwinding (of curve ga@J) hasbeen fixedonthecurve pn9 if r* t-z i(J. e:;'Jl* 
exists such that 

$ (Tr) _ +YJ 
i/T ((I). II #& #{T")\ ::<H ($$T*)! mJ] 

3a) Suppose that an unwinding has not been fixed on p,“) We verify the intersection 
of p&l) with g>(:'J ii.,("), d,c’)J. When it exists we define C(s) by the equality (4.4), havingset 
r il=:f init. Let there be no intersection. we proceed to the construction of curve /Jr('). 

next &,"J , etc. We take C(S) = KPJ if the process of successive construction of the curves 
P.+lJ, p&l), p$" ( . . stops at a finite number. If it is infinite, the curve g,(J) introduced 

by formula (4.5) is a twisting spiral winding down onto its own limit cycle. We set (I is) = 

KS3 \ K('J-(fr@J is an open set bounded by the limit cycle of curve fi-"J). 



3b) Suppose 
point, the curve 
ing the curves. 
along pzr from 
the intersection 

that an unwinding has been fixed on pa(l). Then the curve p&l) has a sprout 
p&l) too has a sprout point, etc. We define a recurrent method for construct- 

suppose that the curves g$, (1) g,,,, r + 12.3 have been constructed. 

0) we verify the intersection P!:i with g$yz i&p), &?x] 
Moving 

&+n (n (a-intersection) and 

of &+rwith &$I I@& &J2)) (@intersection). If the &intersection exists, 
let b$ ~[0, @,] be the first instant of &intersection, B$=bi$ + 3 .!'!,, fi!'!, E [h:!.g, n$)) be 
such that g',:: 6% = P% (b%), Gjl+, be an open set bounded by a curve composed of the arcs 

&+1 , ?‘+ ? C1) (0 @'"),I g!Ys [O 
Suppose that 

@!"!ll. 
a-intersection exists, but b-intersection does not exist, or both typesof 

intersection exist but C&,<&. (1) Then we set C(S)=GF+~ (the instant a,,~ and the set GF+:, 
were introduced in the text below formula (4.3) I. Suppose that &.intersection exists, but 
a-intersection does not exist, or both types of intersection exist but a!::> @$I. We set 

8 C (s) = Kcz) \ G,,,. If there is neither a- nor p-intersection, then we take the curves 
(2) 
gr+z 

and (1) 
g,+, as constructed. If for any k>3 the curve p&l) has neither an a- nor a p-inter- 

section, we define C(s) as a closed set contained between the curves g,(l), g,('). In this case 
the curves g,('),g$') do not have limit cvcles. 
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Figs.2 and 3 show the results 
of the calculation of three ex- 
amples on a computer. In the 
first example (Fig-Z) m L (0.1; -O.i), 
in the second (Fig.3,a) and inthe 
third (Fig.3,b) m= (0;O). In all 
examples P is a segment of length 
2 on the +-axis, symmetric re- 
lative to the origin.Thevertices 
of @Ygon Q: ((-O.Ss;--n.8o),i-O.O8; 0.31), 
(-O.OS;O.OO)j in the first ex- 

ample, ((-0.84; 0.90), (-ii 36; 1.i5). (-n 10; 
0.25), (-O.tO; 0.06)) inthesecond 

and third. Matrix A has the form 

In the first example the set C(S) is bounded by the curves p,(')(O, a,(')l, p1(')(0, or,('q (labelled i,2 
on Fig.2) f in the second, by the curves it [O, h’*‘l, gJ2) IO, E$211 (labelled 1,2) on Fig. 3,a). In 
the third example C(s)is bounded by the limit cycle of curve g, , 
curve g&I) 

(') labelled 2 on Fig.3,b; the 
is labelled 1. The curve p&r) in the third example does not have a sprout. 
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